Circadian rhythms of gastrointestinal function are regulated by both central and peripheral oscillators.
نویسندگان
چکیده
Circadian clocks are responsible for daily rhythms in a wide array of processes, including gastrointestinal (GI) function. These are vital for normal digestive rhythms and overall health. Previous studies demonstrated circadian clocks within the cells of GI tissue. The present study examines the roles played by the suprachiasmatic nuclei (SCN), master circadian pacemaker for overt circadian rhythms, and the sympathetic nervous system in regulation of circadian GI rhythms in the mouse Mus musculus. Surgical ablation of the SCN abolishes circadian locomotor, feeding, and stool output rhythms when animals are presented with food ad libitum, while restricted feeding reestablishes these rhythms temporarily. In intact mice, chemical sympathectomy with 6-hydroxydopamine has no effect on feeding and locomotor rhythmicity in light-dark cycles or constant darkness but attenuates stool weight and stool number rhythms. Again, however, restricted feeding reestablishes rhythms in locomotor activity, feeding, and stool output rhythms. Ex vivo, intestinal tissue from PER2::LUC transgenic mice expresses circadian rhythms of luciferase bioluminescence. Chemical sympathectomy has little effect on these rhythms, but timed administration of the β-adrenergic agonist isoproterenol causes a phase-dependent shift in PERIOD2 expression rhythms. Collectively, the data suggest that the SCN are required to maintain feeding, locomotor, and stool output rhythms during ad libitum conditions, acting at least in part through daily activation of sympathetic activity. Even so, this input is not necessary for entrainment to timed feeding, which may be the province of oscillators within the intestines themselves or other components of the GI system.
منابع مشابه
Central and Peripheral Regulation of Circadian Gastrointestinal Rhythms
OF THESIS CENTRAL AND PERIPHERAL REGULATION OF CIRCADIAN GASTROINTESTINAL RHYTHMS Circadian clocks are responsible for daily rhythms in gastrointestinal function which are vital for normal digestive rhythms and health. The present study examines the roles of the circadian pacemaker, the suprachiasmatic nuclei (SCN), and the sympathetic nervous system in regulation of circadian gastrointestinal ...
متن کاملAging differentially affects the re-entrainment response of central and peripheral circadian oscillators.
Aging produces a decline in the amplitude and precision of 24 h behavioral, endocrine, and metabolic rhythms, which are regulated in mammals by a central circadian pacemaker within the suprachiasmatic nucleus (SCN) and local oscillators in peripheral tissues. Disruption of the circadian system, as experienced during transmeridian travel, can lead to adverse health consequences, particularly in ...
متن کاملCircadian modulation of short-term memory in Drosophila.
Endogenous biological clocks are widespread regulators of behavior and physiology, allowing for a more efficient allocation of efforts and resources over the course of a day. The extent that different processes are regulated by circadian oscillators, however, is not fully understood. We investigated the role of the circadian clock on short-term associative memory formation using a negatively re...
متن کاملCircadian Clocks in Antennal Neurons Are Necessary and Sufficient for Olfaction Rhythms in Drosophila
BACKGROUND The Drosophila circadian clock is controlled by interlocked transcriptional feedback loops that operate in many neuronal and nonneuronal tissues. These clocks are roughly divided into a central clock, which resides in the brain and is known to control rhythms in locomotor activity, and peripheral clocks, which comprise all other clock tissues and are thought to control other rhythmic...
متن کاملPhotoperiod Differentially Regulates Circadian Oscillators in Central and Peripheral Tissues of the Syrian Hamster
In many seasonally breeding rodents, reproduction and metabolism are activated by long summer days (LD) and inhibited by short winter days (SD). After several months of SD, animals become refractory to this inhibitory photoperiod and spontaneously revert to LD-like physiology. The suprachiasmatic nuclei (SCN) house the primary circadian oscillator in mammals. Seasonal changes in photic input to...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Gastrointestinal and liver physiology
دوره 303 4 شماره
صفحات -
تاریخ انتشار 2012